Algorithms
Fall 2014

Problem#1

Describe an O (n log k)-time algorithm to merge k sorted lists into one sorted list, where n is the
total number of elements in all the input lists.

Problem#2

Define Big Omega, Big theta and Big Oh bounds of a function.

Problem#3

You are implementing an algorithm that draws part of the landscape of a terrain, and you are
faced with the following problem: You are given the heights of N points of the terrain's grid, and
you need to find and sort, as fast as possible, the VN highest of them. Give an algorithm that
does this, and argue that no one can do better (up to a constant factor, of course!) (Hint: Your

algorithm should run in O (N) time; there is a simple argument why this is the best possible.)

Problem#4

(a) Give definition of a heap.
(b) What minimal sequences of insert and/or removeMin operations on heap A will transform it
into heap B? Draw the heap after each operation.

Problem#5

Solve the following recurrences using Master theorem:
(1) T(n)=6T(n/3) + °(n'°9%5°)
(2) T(n)=4T(n/2) +°(n?
(3) T(N)=T(4n/5) +°(n)

Problem#6
What is the running time of these algorithms?

The Algorithm Running time

Insertion sort

Merge Sort

Heap Sort

Problem#7
How does the key in a node compare to the keys of its children in a max heap?

Problem#8
Rank the following functions by increasing order of growth; that is, find an arrangement
g1, 92, 93, g4 of the functions satisfying g: = O (92), g2 = O (g3), g3 = O (94).
(For examlple, the correct ordering of n?, n%, n, n®is n, n2, n3, n4.)
fl=n'o9"

f2=vn

f3= n3+sin(n)
f4 =log n"

Problem#9

What is the max-heap resulting from performing on the node storing 6?

N
(40 |
{ 6) [39)
/l; / \14\ - / /\V;\I
NN T
./ NN N
Problem#10

The following array is a max heap: [10,3, 5, 1, 4, 2].

Problem#11
In max-heaps, the operations insert, max-heapify, find-max, and findmin all take O(log n) time.
(T.F)

Problem#12
In the merge-sort execution tree, roughly the same amount of work is done at each level of the
tree. (T,F)

Problem#13
In a min-heap, the next largest element of any element can be found
in O(log n) time. (T,F)

Problem#14
Solve the following recurrences using recursion tree:
T (n) = 3T (n/4) + n?

