Algorithms

Fall 2014

Problem\#1

Describe an $\mathrm{O}(\mathrm{n} \log \mathrm{k})$-time algorithm to merge k sorted lists into one sorted list, where n is the total number of elements in all the input lists.

Problem\#2

Define Big Omega, Big theta and Big Oh bounds of a function.

Problem\#3

You are implementing an algorithm that draws part of the landscape of a terrain, and you are faced with the following problem: You are given the heights of N points of the terrain's grid, and you need to find and sort, as fast as possible, the $\sqrt{ } \mathrm{N}$ highest of them. Give an algorithm that does this, and argue that no one can do better (up to a constant factor, of course!) (Hint: Your algorithm should run in $\mathrm{O}(\mathrm{N})$ time; there is a simple argument why this is the best possible.)

Problem\#4

(a) Give definition of a heap.
(b) What minimal sequences of insert and/or removeMin operations on heap \boldsymbol{A} will transform it into heap B ? Draw the heap after each operation.

Problem\#5

Solve the following recurrences using Master theorem:
(1) $\mathrm{T}(\mathrm{n})=6 \mathrm{~T}(\mathrm{n} / 3)+{ }^{\mathrm{e}}\left(\mathrm{n}^{\log _{3} 6}\right)$
(2) $T(n)=4 T(n / 2)+{ }^{\ominus}\left(n^{2}\right)$
(3) $T(n)=T(4 n / 5)+{ }^{\ominus}(n)$

Problem\#6

What is the running time of these algorithms?

The Algorithm	Running time
Insertion sort	
Merge Sort	
Heap Sort	

Problem\#7

How does the key in a node compare to the keys of its children in a max heap?

Problem\#8

Rank the following functions by increasing order of growth; that is, find an arrangement
$\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}, \mathrm{~g}_{4}$ of the functions satisfying $\mathrm{g}_{1}=\mathrm{O}(\mathrm{g} 2), \mathrm{g}_{2}=\mathrm{O}\left(\mathrm{g}_{3}\right), \mathrm{g}_{3}=\mathrm{O}\left(\mathrm{g}_{4}\right)$.
(For example, the correct ordering of $\mathrm{n}^{2}, \mathrm{n}^{4}, \mathrm{n}, \mathrm{n}^{3}$ is $\mathrm{n}, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$.)

$$
\begin{aligned}
& \mathrm{f} 1=\mathrm{n}^{\log \mathrm{n}} \\
& \mathrm{f} 2=\sqrt{n} \\
& \mathrm{f} 3=\mathrm{n}^{3+\sin (\mathrm{n})} \\
& \mathrm{f} 4=\log \mathrm{n}^{\mathrm{n}}
\end{aligned}
$$

Problem\#9

What is the max-heap resulting from performing on the node storing 6 ?

Problem\#10

The following array is a max heap: $[10,3,5,1,4,2]$.

Problem\#11
In max-heaps, the operations insert, max-heapify, find-max, and findmin all take $\mathrm{O}(\log n)$ time. (T,F)

Problem\#12
In the merge-sort execution tree, roughly the same amount of work is done at each level of the tree. (T,F)

Problem\#13
In a min-heap, the next largest element of any element can be found in $\mathrm{O}(\log \mathrm{n})$ time. (T, F)

Problem\#14
Solve the following recurrences using recursion tree:
$\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 4)+\mathrm{n}^{2}$

